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EFFECT OF RANDOM GEOMETRIC UNCERTAINTY ON THE COMPUTATIONAL

DESIGN OF A 3-D FLEXIBLE WING
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P. A. Newman *
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The effect of geometric uncertainty due to statistically independent, random, normally
distributed shape parameters is demonstrated in the computational design of a 3-D
flexible wing, A first-order second-moment statistical approximation method is used to
propagate the assumed input uncertainty through coupled Euler CFD aerodynamic / finite
element structural codes for both analysis and sensitivity analysis, First-order sensitivity
derivatives obtained by automatic differentiation are used in the input uncertainty
propagation, These propagated uncertainties are then used to perform a robust design of
a simple 3-D flexible wing at supercritical flow conditions, The effect of the random input
uncertainties is shown by comparison with conventional deterministic design results,
Sample results are shown for wing planform, airfoil section, and structural sizing
variables,

Introduction

"A robust design problem is one in which a design is
sought that is relatively insensitive to uncertain
quantities" [1]; that is, the objective function does not
change much and the constraints are not likely to be
violated. Robust design problems are prevalent in
disciplines such as structures [2] and mechanisms [3],
but, due to lack of study to quantify uncertainty in
aerodynamics and computational expense, have not
been widely applied for aerodynamic design. This paper
represents an attempt to study robust design of a
flexible wing that is built upon an established
multidisciplinary design optimization procedure.

Several recent papers [4-8] have addressed the issues of
and obtained sample results using CFD for
aerodynamic optimizations subject to uncertainties in
the input or design variables; we shall call these robust
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optimizations in contrast to conventional or
deterministic optimizations. In all of these robust
optimization demonstrations, three steps are involved.
First, the input uncertainties are quantified. Second,
the input uncertainties are propagated through the
CFD code to obtain uncertainties for the output
functions. Third, the output functions with
uncertainties are used in the optimization objective
and constraint functions to perform a robust design.
Implementation algorithms and details used to
accomplish these three steps differ in the cited papers,
but in all cases the input uncertainty is shown to
influence the design. These input uncertainties
represent error sources that are "external" to the CFD
code. Several other recent papers [9-14] have
discussed issues and results related to uncertainty
analysis for CFD codes and applications but have not
included optimization or design.

Computational simulation uncertainties also arise from
physical, mathematical, and numerical modeling
approximations (see, for example, [11-17]); these are
called "internal" model error and uncertainty sources.
Internal sources are not considered herein but must be

included in assessing the total uncertainty in any
computational simulation of physical phenomena. The
recent Journal of Fluids Engineering special section
on "Quantifying Uncertainty in CFD" [15] contains
eight invited papers addressing both numerical
accuracy and physical uncertainty issues. In the
present work, the discrete code results are considered
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to be deterministically certain in order to show the

influence of statistically random input geometry, such

as may be due to manufacturing variations, on a

gradient-based performance design optimization. As

pointed out in [5], [7], and [8], these probabilistic-based

performance designs differ from the probabilistic-based

reliability designs that are usually considered in the

structures disciplines. For the former problem, one is

more interested in the probable or frequent events that

occur around the mean values, whereas for the latter

problem, one is most interested in the infrequently

occurring catastrophic events. An example of

multidisciplinary performance optimization subject to

uncertainty involving linear aerodynamics can be found

in [18]; simultaneous consideration of both types of

probabilistic-based design problems is also discussed

there.

The present work considers the simultaneous

aerodynamic-structural performance optimization of a

simple 3-D flexible wing subject to statistical

uncertainty in geometric input for wing planform,

airfoil section, and structural thickness design variables.

The approach presented in [5] and [8] is extended to

multidimensional supercritical flow about a flexible

wing that is modeled by high fidelity multidisciplinary

computational simulations. A first-order second-

moment (FOSM) statistical approximation method is

used to propagate the assumed input uncertainty

through coupled Euler CFD aerodynamic/finite element

structural codes for both system analysis and sensitivity

analysis. First-order sensitivity derivatives (SD)

obtained by automatic differentiation are used in the

FOSM input uncertainty propagation. These

propagated uncertainties are then used to perform a

robust design of a simple 3-D flexible wing. The effect

of the random input uncertainties is shown by

comparing it with conventional deterministic design

results. This present implementation of the statistical

approach is very easy to retrofit into gradient-based

design codes that already utilize analytical or semi-

analytical sensitivity derivatives for optimization.

Inte,q rated Statistical Approach

The integrated statistical approach, as demonstrated for

a CFD code in [5] and [8] for quasi 1-D subsonic Euler

flow, is presently implemented for supercritical flow

about a 3-D flexible wing. This approach follows the

integrated strategy of [3] that was demonstrated on a

linkage mechanism design. That strategy for mitigating

the effect of uncertainty includes (a) uncertainty

quantification, (b) uncertainty propagation, and (c)

robust design. Herein, the details differ somewhat from

[3], [5], and [8]; the major difference is in the process

of obtaining the required second-order sensitivity

derivatives. In this present implementation, finite

differencing of the "robust" objective and active

constraint functions is controlled by the optimizer

code, whereas in the quasi 1-D application [5, 8], these

second derivative pieces were constructed using both

hand- and automatically differentiated code as detailed

in [19] and provided to the optimizer code.

Uncertainty Quantification

Uncertainty quantification is not an easy task (for

example, see [6]); though it is an extremely important

one that must be included for any realistic design. The

authors have neither the manufacturing data nor the

engineering experience to address it here. The

uncertainty quantification issue was simulated here by

assuming that the uncertainty in geometry was

characterized by statistically independent, random,

normally distributed shape parameters such as those

due to manufacturing process variations. Our

assumption simplifies the resulting algebra and

equations to be coded, but it serves to illustrate the

influence of input geometry on a 3-D flexible wing

design.

Uncertainty Propa,qation

Uncertainty propagation was accomplished herein

using only the FOSM method, whereas in [5] and [8]

both first- and second-order approximations were

demonstrated and compared to Monte Carlo

simulations. This propagation was done for both CFD

Euler and finite element method (FEM) structures

discipline codes using the sensitivity analysis codes

from our Simultaneous Aerodynamic and Structural

Design Optimization (SASDO) studies [20]. First-

order SDs obtained by automatic differentiation have

been used as previously demonstrated for a CFD code

in [5] and [8] and an FEM code in [21]. A brief

outline of the FOSM follows; for more details see [5]

and [8].

The first step in the FOSM analyses is to approximate

the system output solutions of interest in Taylor series

form. These approximations are formed to estimate the

output value for small deviations of the input. Given

input random variables b={bl ..... bn} with means

= {bl ..... bll } and standard deviations

c_b = {C_bl,...,C_bn}, and system output function F, the

first-order Taylor series approximations are

" _F

F (b) = F (b) + _ -_-_-(b i - bi ) (1)

One then obtains expected values for the mean (first

moment) and variance (second moment) of the output

function, F, which depend on the SD and input

variances rib. The mean of the output function F, and

standard deviation (SF, are approximated as



AIAA2002-2806

F=F(b)

X_(_Fc_/2 (2)'
where the SD, _F/_bi, are evaluated at the mean

values b. These SD are obtained using the automatic

differentiation tool ADIFOR [22, 23]. Note that,

although it is not shown explicitly, the function F may

also depend on other parameters for which there is no

uncertainty or for which that uncertainty is too small to

be significant. Such variables would have no

contribution to the standard deviation, cry. They are not

explicitly included in any further discussion.

Robust Desiqn

Conventional optimization for an objective function _F,

which is a function of some system output F, state

variables Q, and input variables b, is expressed in

Eqs. (3).

min _=_(F; Q, b)

subject to (3)

g(F; Q, b) _<0

The CFD state and structural equilibrium equation

residuals, R(Q,b)=0, determine Q given b. The system

constraints g are represented as inequality constraints.

The input variables b are precisely known for

conventional optimization, and all functions of b are

therefore deterministic.

For robust design, the conventional optimization must

be treated in a probabilistic manner. Given uncertainty

in the input variables b, all of the functions in Eqs. (3)

become uncertain. The design variables are now the

mean values, b = {b 1..... bn}' with b assumed

statistically independent and normally distributed with

standard deviations Orb. The CFD state and structural

equilibrium equation residuals R are deemed to be

satisfied at the mean values Q and b such that

R(Q, b) = 0. The objective function is cast in terms of

expected values and becomes a function of F and cry.

The system constraints are cast into a probabilistic

statement: the probability that the constraints are

satisfied is greater than or equal to a desired or

specified target probability, that is P(g < 0) > P,. This

probability statement is transformed [3] to a constraint

involving mean values and standard deviations under

the assumption that the variables involved are normally

distributed. The robust optimization can be expressed as

min W=W(F, a v ; Q, b)

subject to (4)

g(F; Q,b) + k _g < 0

where k is the number of standard deviations crg that

the constraint g must be displaced to achieve the

desired or specified target probability Pt. For the

FOSM approximation, the standard deviations cry and

crg are of the form given in Eqs. (2) involving first-

order SDs. Therefore, a gradient-based optimization

will then require second-order SDs to compute the

objective and constraint gradients. Herein, the

probabilistic objective and constraint functions of

Eqs. (4) are evaluated using function analysis and

first-order SD values from sensitivity analysis codes.

These augmented functions are then finite differenced

to obtain the gradients as required by the optimization

code.

Application to 3-D Flexible Winq
A simple 3-D flexible wing geometry is chosen to

illustrate the influence that statistically random

geometric shape and sizing parameters have on a

gradient-based performance optimization for

supercritical flow conditions. This application is

multidisciplinary; it considers both aerodynamics and

structures. The state vector Q considered above can be

decomposed into a separate flow-field vector Q and a

structural displacement vector u, Q={Q,u}. The set of

design variables b can also be separated into two sets:

those describing the structural element sizes bsize and

those describing the wing geometry bg ..... such that

b:{bg ...... bsize }. The state equations can be separated

as R={Ri,j,k,1, Rm} where the solution of the high

fidelity Euler CFD model is represented by

ti,j,k, 1 (Q, Xde f (bg ...... I!)) : 0 (5)

with i, j, k, and 1 representing loop indices over the

volume mesh points and the mass, momentum, and

energy equations and the solution of the linear FEM

structural model is represented by

R m : K(bsize , Xjig (bgeo m ))11 - f(Q) = 0 (6)

with m representing the loop index over the FEM

mesh points, Xjig. These equations are coupled in that

the aerodynamic load f(Q) influences the displacement

u of the structure and this displacement of the

aerodynamic shape Xde f changes the load. Sensitivity

analysis essentially involves solving for the derivative

of Eqs. (5) and (6) with respect to each of the design

variables bi for c3Q/c3b and c3u/c3b. Then the

derivative equations are coupled by _f/_b and

_u/_b.

Problem Description

Two sample problems are considered: a two-design-

variable (2DV) case for which conventional or

deterministic optimization results have been

previously obtained [24], and a four-design-variable

(4DV) case. The trapezoidal-planform, semispan wing

and input design variables are shown in Fig. 1. In the



AIAA2002-2806

2DVexamples,thewingsectionsareheldfixedand
varylinearlyfromanNACA0012attherootto an
NACA0008atthetip,whichisthenrounded.Thesize
ofthestructuralelementsisalsoheldfixedinthe2DV
examples.Thetwoplanformdesignvariablesarethetip
setbackxtandthetipchordct.Althoughthesevariables
arenottypicallysubjecttosignificantvariance,theyare
ascribedsomeuncertaintyhereto illustratethe
techniqueandprocessofpropagatinginputuncertainty
throughthecoupledaerodynamic/structuralanalysis
andoptimizingthedesignin thepresenceof the
uncertaintyintheoutputfunctions.

F6

= pI

tr

Figure 1. Wing geometry and sizing

parameterization.

The relative sizes of the skin thickness, the web

thicknesses, and the truss cross section areas are fixed

within each structural zone depicted in Fig. 1. A

scaling factor Fn is assigned to change the thickness and

area of all structural elements in zone n. In the 4DV

case, two of these sizing factors are considered as

design variables. The other two design variables

considered in the 4DV case were determined by

examining both sensitivity derivatives and (reasonable)

expected variances. As can be seen from Eq. (2), the

size of an output function variance depends on the size

of the input variances weighted by the sensitivity

derivative of the output function with respect to that

input variable. For input variances of 0.1%, the larger

SDs with respect to root airfoil thickness tr and camber

zr appeared to provide a more realistic representation of

practical uncertainty than the variables used in the 2DV

cases.

The objective function to be minimized is the negative

of the square of the lift-to-drag ratio, -(L/D) 2, for

M_=0.8,c_=l °, representative of cruise conditions

for a transport aircraft. Both coupled solution-

dependent and geometric constraints are imposed. The

solution-dependent constraints are

• lower limit on the difference between the total

lift and the structural weight, L- W, where

L = CL%S

• upper limit on compliance, the work done by the

aerodynamic loads to deflect the structure,

V = _pu .rids

• upper limit on pitching moment, Cm, in lieu of a
trim constraint

The purely geometric constraints are

• minimum leading edge radius, in lieu of a

manufacturing requirement

• side constraints (bounds) on the active design

variables

State variables for aerodynamics and structures are

determined from Eqs. (5) and (6), the fluid-flow

conservation laws (Euler equations) and the structural

equilibrium conditions (for FEM), respectively. The

conventional or deterministic optimization for the

2DV case follows Eqs. (3) and is reported in [24].

Details regarding procedures, equations, codes, and

background references are given in that paper and will

not be repeated here.

Robust Desi,qn Process

Robust design for both cases follows the integrated

statistical approach as outlined above, i.e. Eqs. (1), (2),

and (4), according to [5] and [8]. The objective and

constraint functions listed above are approximated by

Eqs. (1) with their mean and variances given by

Eqs. (2). First-order SDs, as obtained from ADIFOR-

processed analysis code, are used in Eqs. (2) to

propagate the input uncertainty to the output of this

coupled.mu!tid!scip.lina..ry system. Figure 2 depicts a
Initialize:

,

Robust System

Objectiveand Robust Design

Constraints

Figure 2. Schematic of robust optimization process.

schematic of this integrated procedure and data flow

for robust design optimization according to Eqs. (4).

The shaded portions of the schematic depicted in

Fig. 2 represent code blocks unchanged from the

original deterministic gradient-based design code [20,

24].
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InthesimpleCFDexampleconsideredin [5]and[8],
theobjectivefunctionwasformatchingatarget,i.e.,to
minimizethe squareof thedifferencebetweenan
outputanda predeterminedtargetvalue.In the
constructionof theobjectivefunctionobtainedby
takingexpectedvalues,theFOSMapproximationofthe
variancesurvivesbecauseof thesquaringoperation.
Thus,first-orderSDsappearin therobustobjective
function.Inthepresentexample,theobjectivefunction
istakenas-(L/D)2andagaintheFOSMapproximation
to thevarianceappearsin therobustversion.Then
whenthe FOSMapproximationof the standard
deviationis usedin the constraint,the robust
optimizationproblemisgivenas

n (a(L/D) _ )2min _P = -(L/D)2 - i_l ( _ bi

subject to (7)

g=,+kli_l/_@ii _bi/2 _<0

We note here that the robust optimization problem

reduces to the conventional or deterministic problem

when the standard deviation of the inputs _b is zero.

Specific computational tools used to perform the tasks

depicted by the solid boxes in Fig. 2 are identified in
the next section.

Computational Tools

Major computations in this robust optimization

procedure are performed using a collection of existing

codes. These codes are executed by a separate driver

code and scripts. Each code runs independently, some

simultaneously on separate processors, and the required

data transfers between them, also directed by the driver,

are accomplished via data files.

The aerodynamic flow analysis code used for this study

is a version of the CFL3D code [25] used in the Euler

mode. The gradient version of this code, which was

used for aerodynamic sensitivity analysis, was

generated by an unconventional application [26] of the

automatic differentiation code ADIFOR [22, 23] to

produce a relatively efficient, direct mode, gradient

analysis code [27].

The surface geometry was generated based on a code

utilizing the Rapid Aircraft Parameterization Input

Design (RAPID) technique developed by Smith et al

[28]. This code was also preprocessed with ADIFOR to

generate a code capable of producing SD as well.

The CFD volume mesh needed by the flow analysis

code was generated using a version of the CSCMDO

[29] grid generation code. The associated grid SDs

needed by the flow sensitivity analysis were generated

with an automatically differentiated version of

CSCMDO [30]. The 45,000 grid point baseline

volume mesh required by CSCMDO and used in the

present flexible wing examples was obtained with the

Gridgen TM code. The wing surface portion of the mesh

is shown in Fig. 3. This mesh is admittedly quite

coarse by current CFD analysis standards.

CFD mesh

C-O topology

73x25x25 volume

49x25 on the wing

3251el2141....CST ts: ii i i i ! !_ i_i_ I

1110 truss

583 nodes

Figure 3. CFD and FEM computational meshes.

The structural analysis code [31] used to compute the

deflection of the elastic wing was a generic finite

element code. The flexible structure for the wing

shown in Fig. 3 was discretized by 583 nodes; there

were 2,141 constant-strain triangle (CST) elements

and 1,110 truss elements. Zone boundaries for the

design variables controlling element size are also

shown in Fig. 3. Because the elastic deformation was

assumed to be small, linear elasticity was deemed to

be appropriate. The structural sensitivity equations
were derived based on the direct differentiation

method. The sensitivity of the aerodynamic forces

appears as a term on the right-hand side (RHS) of the

deflection sensitivity equations. The derivative of the

stiffness matrix in these sensitivity equations was also

generated [32] by using the ADIFOR [22, 23]

technique. The coefficient matrix of the structural

sensitivity equations was identical to that of the

structural equations. Consequently, these structural

sensitivity equations were solved efficiently by
backward substitution with different RHSs for each

sensitivity.

At the wing surface, i.e., the interface where

aerodynamic load and structural deflection

information is transferred, surface nodes of the FEM

structural model were assumed to be a subset of the

CFD aerodynamic surface mesh points for this

application (see Fig. 3). This lack of generality

allowed for simplifications in the data transfers and,

although an important issue, it was not deemed crucial

for these initial 3-D robust optimization
demonstrations.

The code for the box labeled Robust System Objective

and Constraints was simply the programming of Eqs.

(1), (2) and (4) as previously discussed. These

probabilistic objective and constraints were then fed to

the optimizer [33]. The Sequential Quadratic

programming (SQP) procedure was used and the
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objectiveandconstraintgradientswerecalculatedby
theoptimizerusingfinitedifferences.

Sample Results & Discussion

Two-Desi.qn-Variable Cases

The 2DV optimization problem was solved using

several values for the input uncertainties associated

with the design variables. Those results are compared to

conventional or deterministic design results in Figs. 4.

Figure 4(a) shows the level sets (contours) of the

deterministic objective function shaded according to the

key and drawn as thin solid black lines. In addition, the

deterministic payload constraint function is shown as a

yellow (light) solid shaded region to indicate where it is
violated and as contour lines to indicate where it is

satisfied. The square symbol is the deterministic

optimization result. For the deterministic design, the

payload constraint is active, but the compliance and

pitching moment constraints are not; in fact, with the

initial design point of (1,1) they were never active

during the deterministic optimization process. This

deterministic result was the initial design point from

which all the robust optimization problems were

started. For all the robust design problems, it was

assumed that the same value c_ could be used for each

of the input c_i.

starting point was the solution of the problem with

c_ = 0.02.

Figure 4(b). Probabilistic a = 0.01 & 0.02 robust

optimization results overlaid on deterministic level
sets.

The solutions to the robust optimizations with

c_ = 0.03 and c_ = 0.04 are substantially different from

the other optimization results as shown in Fig 4(c),

where they are also overlaid on the deterministic

results. For these problems, the formerly inactive

constraint on compliance became active. A red (dark)

solid region indicates where it is violated and wide red

(dark) curves indicate where it is not violated. For two

design variables and two active constraints, the

solution must be at the intersection of the (robust)

constraints, which moves the design points much
farther from the deterministic solution.

Figure 4(a). 2DV level sets of deterministic objective
and active constraint functions with conventional

optimization result.

Figure 4(b) shows robust optimization results overlaid

on the deterministic results. The robust designs with

c_ = 0.01 and c_ = 0.02 have been pushed away from the

payload constraint boundary during the optimization

process. The level sets for the deterministic objective

function and payload constraint are nearly parallel over

a significant region so that there is a large allowable

variation in the design variables to solve the design

problem to the specified tolerance. This can also be

recognized by the solution for a second deterministic

optimization problem shown as the circle for which the

Figure 4(c). Probabilistic ff = 0.03 & 0.04 robust

optimization results overlaid on deterministic level
sets.

The effect on the planform shape can readily be seen

in Fig. 5. Although the c_ = 0.01 and c_ = 0.02 cases are

easily distinguishable from the deterministic case, they

are indistinguishable from each other. The c_ = 0.03

and c_ = 0.04 cases are easily distinguishable from all

other cases. Physically, the effect of reducing the
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setback is to decrease the twist deformation of the tip
(wash-out), thereby increasing the lift and hence the
available payload. But the increased lift, particularly at
the tip, increases the bending and, with it, the
compliance. The effect of increasing the tip chord is to
increase the weight, but that effect is offset by the
increased lift, which increases the available payload.
This 2DV problem is not a representative engineering
problem, but it is useful for understanding the robust
design process through visualization and also for
determining that the process is functioning properly.
Moreover, the size of the coefficients of variation (7i
used here is much larger than one would expect in
practice for these selected variables.

2 Deterministic

Robust, (_=0.01 .................... _

Robust, (_=0.02 ................ _,i_2v'_ - ..'!

15 __i..2 .........................

0.5 _ _" _"_"'" ......

_-'_'_, , , I .... I .... I .... I .... I .... I

O0 0.5 1 1.5 2 2.5 3

Z

Figure 5. Planforms resulting from 2DV
optimizations.

Four-Desiqn-Variable Cases
Although the 2DV problem is useful for understanding
the process and ascertaining that it is performing
correctly, the variance of the design variables was
necessarily exaggerated to see any effect. That is, the
first step of the robust design process, quantification of
uncertainty of the input variables, was not followed. For

Table 1. 4DV problem results.

this 4DV example, a sensitivity analysis was
performed to determine those parameters for which a
realistic variance would have a significant effect on
the output functions used as the objective and
constraints. The four parameters chosen as design
variables were the root airfoil section maximum

thickness tr, the root airfoil section maximum camber
zr, and the structural sizing factors for the two inboard

regions, F1 and F2, as shown in Fig. 1. For the cases

shown here, a coefficient of variation, (Yi = 0.001, was

chosen for all four variables. As in the 2DV cases, a
deterministic optimization was performed first. That
deterministic result was used as the initial design for
all the robust optimizations. The deterministic
optimization process reduced the section thickness tr to

reduce the shock strength thereby reducing the drag
and improving the L/D. As a consequence, the wing
became more flexible. To satisfy the compliance
constraint g(V), the structure element thickness
increased, and, as a consequence, the wing became
heavier. To satisfy the payload constraint g(L-W), the

section camber increased. The pitching moment did
not appear to be affected sufficiently for that
constraint, g(Cm), to be active. The deterministic
results are shown in the first column of Table 1.

Table 1 and Figs. 6-8 present the results for the
deterministic optimization and robust optimizations
for several values of k. An increase of the parameter k
represents an increase in the specified target
probability and therefore the probability that the
constraints are met. Assuming a normal Gaussian
distribution of the output variables, values of k = 1, 2
and 3 would represent probabilities of 84.13%,

97.73% and 99.87%, respectively. The mean values of
the constraint functions are shown in comparison to
the robust constraint values in Table 1. The design
variables are compared in Fig. 6.

Deterministic Robust solution, Robust solution, Robust solution,
solution k=l k=2 k=3

Desi.qn variable inputs

t r

Zr

F1

['2

Responses
obj
g(L-W)

g(V)

g(Cm)

L/D

weight

0.778J

1.138J

4.075

3.7

-19.1

-0.00077

-0.00032

-0.0666

21.85

54243

0.774

1.139

4.05

3.656

robust mean

-19

0.000048 -0.0107

-0.000028 -0.0077

-0.0531 -0.062

21.82

53917

0.774

1.139

4.009

3.563

robust

-18.95

0.00031

-0.00501

-0.0422

mean mean

-0.0211

-0.0203

-0.0601

21.77

53056

0.773

1.14

3.984

3.528

robust

-18.93

-0.000745

0.000449

-0.0262

-0.0328

-0.0225

-0.0532

21.75

52684


